Appearance
2a=4
a=2
ca=32
c=3
b2=a2−c2=4−3=1
E:x24+y2=1
kAT=12t+2=12t+4
kBT=12t−4
设 lAC:x=m1y−2,m1=2t+4=2(t+2)
lBD:x=m2y+2,m2=2t−4
x24+y2=1x=m1y−2
(m12+4)y2−4m1y=0
y1=4m1m12+4
x24+y2=1x=m2y+2
(m22+4)y2+4m2y=0
y2=−4m2m22+4
117=y2−1212⋅y1−1212
=(2y2−1)(2y1−1)
=(−8m2−m22−4m22+4)(8m1−m12−4m12+4)
=m22+8m2+4m22+4⋅m12−8m1+4m12+4
这时候再换回去
117=4(t−2)2+16(t−2)+4(t−2)2+4⋅4(t+2)2−16(t+2)+44(t+2)2+4
=(t−2)2+4(t−2)+1(t−2)2+1⋅(t+2)2−4(t+2)+1(t+2)2+1
=t2−3t2−4t+5t2−3t2+4t+5
=(3−t2)2(t2+5)2−16t2=117
令 t2=m
(3−m)2(m+5)2−16m=117
m2−6m+9m2−6m+25=117
17m2−102m+153=m2−6m+25
16m2−96m+128=0
m2−6m+8=0
(m−2)(m−4)=0
或m=2或4
或舍去t=±2或±2(舍去)
t=±2
TIP
换元!从未有过让 x=(m+n)y+z 这种很多项的直线与曲线联立!都是令 m+n=m1,
则 x=m1y+z,这样联立更简单,后面再换回去。