Appearance
x216+y212=1
A(−4,0),P(x1,y1),Q(x2,y2),R(3,0)
设直线 l:x=my+3
M(163,yM),N(163,yN)
y1x1+4=yM16+123,yM=28y13(x1+4)
y2x2+4=yN283,yN=28y23(x2+4)
k1=kMR=4y1x1+4
k2=kNR=4y2x2+4
k1k2=16y1y2(x1+4)(x2+4)
{x216+y212=1,→3x2+4y2−48=0x=my+3
3(my+3)2+4y2−48=0
(3m2+4)y2+18my−21=0
y1y2=−213m2+4
y=x−3m
3x2+4(x−3m)2−48=0
(x1+4)(x2+4)=3×16+4×49m2−483+4m2=49×43m2+4
所以 k1k2=16×(−21)49×4=−127