Skip to content
难度: 困难
标签: 圆锥曲线抛物线最值范围问题定点定值问题切线问题单切线问题
是否做正确: 未标明
是否属于易错题: 未标明
如果做错原因可能是: 未标明
解(1)

A(x1,y1)

y=2x

l:yy1=2x1(xx1)

y=2x1x2x12+y1=2x1xx12

l 的垂线 lAB:yy1=12x1(xx1)

y=12x1x+12+y1

{y=x2y=12x1x+12+y1

x2+12x1x12y1=0

x1+x2=12x1,x1x2=12y1

x1x2=(x1+x2)24x1x2

=14x12+2+4y1

=14x12+4x12+221+2=2

4x12=1,x1=12 时取等,

此时 l:y=x14 与椭圆有 2 个交点。

解(2)

|DO||DB|=|OH||AB|

kAB=12x1,kOH=12x1

lOH:y=12x1x

l:y=2x1xx12

OH=x124x12+1

|AB|=1+14x12|x1x2|

=4x12+14x128x12+16x12+14x12

=(4x12+1)24x12

所以 |DO||DB|=|OH||AB|=4x14(4x12+1)2

=4x1416x14+8x12+1=14+2x12+14x12

=1(2+12x12)2

接下来根据 l 与椭圆有两个交点,利用 Δ>0 得出 x1 的具体范围。

{x22+y2=1y=2x1xx12

Δx=4×2×1×(2×4x12+1x14)>0

x14+8x12+1>0,x12=t>0

t2+8t+1>0

x12=t(0,4+17)

=1(2+12t),为单增函数

所以 (0,417)

TIP

只要是开口向上的抛物线的处理手段:(单切线、双切线都这样做)

先设切点,再表达切线

这样后面所有的式子都可以用切点的横坐标表示。

为什么开口向上的抛物线要设点?因为可以求导,得出这个点的切线斜率。

TIP

已知一条直线,要求这条直线的垂线,那么我们需要找一个定点,然后根据斜率为 1k,要写最初的点斜式

比如 y=k(xx0)+y0=kxkx0+y0 的垂线方程不是 y=1kxkx0+y0

而应该是 y=1k(xx0)+y0

TIP

对于函数 f(x)=4x4(4x2+1)2,x2(0,4+17)

要求值域,要是没有用最简单的方法(把括号打开,分子除以分母)做,而是令

4x2+1=t,t(1,17+417)

那么需要注意,一些求值域技巧。

f(t)=4(t14)2t2=4t2(t1)216=14t22t+1t2

=14(12t+1t2)

=14(11t)2,它是个增函数。

t=1 时,f(t)=0

t=17+417 时,我们应该先算 1t=117+417=174×1717216×17=1741717=141717

这样才能化简,否则如果先通分,根本就算不出来。

先通分:f(17+417)=(1117+417)2

这咋算?????

=(16+41717+417)2

距离 2025 高考还有 -103 天。

Released under the MIT License.