Appearance
MA→=(2−x,3−y)
MB→=(−2−x,−3−y)
MA→⋅MB→=x2−4+y2−3=x24−1
x28+y26=1
设 P(x0,0)
设 l1:x=m1y+x0,k1=1m1
{3x2+4y2−24=0x=m1y+x0
3(m1y+x0)2+4y2−24=0
(3m12+4)y2+6m1x0y+3x02−24=0
y1+y2=−6m1x03m12+4
x1+x2=m1(y1+y2)+2x0=−6m12x03m12+4+2x0=8x03m12+4
G(4x03m12+4,−3m1x03m12+4)
设 l2:x=m2y+x0,k2=1m2
同理,H(4x03m22+4,−3m2x03m22+4)
设 N 点坐标为 (x0,yN)
根据三点共线法,
yN+3m1x03m12+4x0−4x03m12+4=yN+3m2x03m12+4x0−4x03m22+4
分子分母同乘 3m12+4 或 3m22+4。
(3m12+4)yN+6m1x03m12x0=(3m22+4)yN+6m2x03m22x0
(3+4m12)yN+3x0m1=(3+4m22)yN+3x0m2
yN(4m12−4m22)=3x0(1m2−1m1)
4yN(m22−m12m12m22)=3x0(m1−m2m1m2)
4yNm2+m1m1m2=6x0−11
yN=−3x0m1m24(m1+m2)
k3=−3m1m24(m1+m2)
k3(k1+k2)=−34