Appearance
E:x24+y23=1
设圆半径为 r,圆心为 (1,y0)
M(1,y0+r),N(1,y0−r),A(−2,0)
k2=y0
设直线 AM:x=m1y−2,m=3y0+r
{x24+y23=1x=m1y−2
3(m1y−2)2+4y2−12=0
(3m12+4)y2−12m1y=0
y1+y2=yp=12m13m12+4
xp=m1yp−2=12m12−6m12−83m12+4=6m12−83m12+4=2−163m12+4
设直线 AN:x=m2y−2,m2=3y0−r
同理,yQ=12m23m22+4,xQ=2−163m22+4
k1=yp−yQxp−xQ=12m13m12+4−12m23m22+4−163m12+4+163m22+4
=12m1(3m22+4)−12m2(3m12+4)−16(3m22+4)+16(3m12+4)
=36m1m2(m2−m1)+48m1−48m248m12−48m22
=36m1m2(m2−m1)+48m1−48m248(m1+m2)(m1−m2)
=−36m1m2+4848(m1+m2)=−3m1m2+44(m1+m2)
m1m2=3y0+r3y0−r=9y02−r2
m1+m2=3y0+r+3y0−r=3y0−r+y0+ry02−r2=32y0y02−r2
k1=−3×9+4y02−4r224y0
k1k2=−27+4y02−4r224
因为 r2=1+y02
所以 k1k2=−27+4×(−1)24=−3124