Appearance
P(x,y)
A(−2,0)
|PM|=x+2
|OA|=2
|PA|=(x+2)2+y2
(x+2)2+y2=x+4
(x+2)2+y2=x2+8x+16
y2=4x+12
设直线 AB:x=my+1
S(x1,y1),T(x2,y2)
圆:ST圆:(x−x1)(x−x2)+(y−y1)(y−y2)=0
x2+y2−(x1+x2)x+x1x2−(y1+y2)y+y1y2=0
{y2=4x+12x=my+1
y2−4x−12=0
y2−4my−16=0
y1+y2=4m, y1y2=−16
x1+x2=m(y1+y2)+2=4m2+2
x1x2=(x1−0)(x2−0)=1−12m2
所以 x2+y2−(4m2+2)x+1−12m2−16=0
x2+y2−4m2x−2x−4my−12m2−15=0
{(−4x−12)m2=0−4my=0
解得 x=−3,y=0
代入原方程,满足。
所以过定点 (−3,0)