Skip to content

08 聚合函数

我们上一章讲到了 SQL 单行函数。实际上 SQL 函数还有一类,叫做聚合(或聚集、分组)函数,它是对 一组数据进行汇总的函数,输入的是一组数据的集合,输出的是单个值。

聚合函数介绍

什么是聚合函数

聚合函数作用于一组数据,并对一组数据返回一个值。

聚合函数类型

  • AVG(),求一列数据的平均值,忽略 null 值
  • SUM(),求一列数据的总和,忽略 null 值
  • MAX(),求一列数据的最大值
  • MIN(),求一列数据的最小值
  • COUNT(),求一列数据的个数,忽略 null 值

聚合函数语法

聚合函数不能嵌套调用。比如不能出现类似“AVG(SUM(字段名称))”形式的调用。

AVG 和 SUM 函数

可以对数值型数据使用 AVG 和 SUM 函数。

shell
SELECT AVG(salary), MAX(salary),MIN(salary), SUM(salary)
FROM   employees
WHERE  job_id LIKE '%REP%';

MIN 和 MAX 函数

可以对任意数据类型的数据使用 MIN 和 MAX 函数。

shell
SELECT MIN(hire_date), MAX(hire_date)
FROM      employees;

COUNT 函数

COUNT(*) 返回表中记录总数,适用于任意数据类型,并且不会忽略 null 值,null 也会计算在内。

shell
SELECT COUNT(*)
FROM      employees
WHERE  department_id = 50;

而 COUNT(expr) 返回的是 expr 不为空的记录总数。

shell
SELECT COUNT(commission_pct)
FROM   employees
WHERE  department_id = 50;

因为 commission_pct 都为 null,所以记录总数为 0。

问题

count(*)count(1) 或 count(列名) 的区别?

count(*) 是 SQL92 定义的标准统计行数的语法,跟数据库无关,跟 NULL 和非 NULL 无关。

count(*) 会统计值为 NULL 的行,而 count(1) 或 count(列名) 不会统计此列为 NULL 值的行。

GROUP BY

基本使用

可以使用 GROUP BY 子句将某一列分成若干组进行计算。

语法:

shell
SELECT column, group_function(column)
FROM table
[WHERE  condition]
[GROUP BY   group_by_expression]
[ORDER BY   column];

WHERE 一定放在 FROM 后面。

在 SELECT 列表中所有未包含在组函数中的列都应该包含在 GROUP BY 子句中。举例:

shell
SELECT   department_id, AVG(salary)
FROM     employees
GROUP BY department_id ;

包含在 GROUP BY 子句中的列不必包含在 SELECT 列表中

shell
SELECT   AVG(salary)
FROM     employees
GROUP BY department_id;

使用多个列分组

shell
SELECT   department_id dept_id, job_id, SUM(salary)
FROM     employees
GROUP BY department_id, job_id ;

GROUP BY 中使用 WITH ROLLUP

使用 WITH ROLLUP 关键字之后,在所有查询出的分组记录之后增加一条记录,该记录计算查询出的所 有记录的总和,即统计记录数量。

shell
SELECT department_id,AVG(salary)
FROM employees
WHERE department_id > 80
GROUP BY department_id WITH ROLLUP;

注意, 当使用 ROLLUP 时,不能同时使用 ORDER BY 子句进行结果排序,即 ROLLUP 和 ORDER BY 是互相排斥 的。

HAVING

基本使用

过滤分组:HAVING 子句

  1. 行已经被分组。
  2. 使用了聚合函数。
  3. 满足 HAVING 子句中条件的分组将被显示。
  4. HAVING 不能单独使用,必须要跟 GROUP BY 一起使用。
shell
SELECT   department_id, MAX(salary)
FROM     employees
GROUP BY department_id
HAVING   MAX(salary)>10000 ;

非法使用聚合函数:不能在 WHERE 子句中使用聚合函数。如下:

shell
SELECT   department_id, AVG(salary)
FROM     employees
WHERE    AVG(salary) > 8000
GROUP BY department_id;

WHERE 和 HAVING 的对比

区别 1:WHERE 可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数作为筛选条件; HAVING 必须要与 GROUP BY 配合使用,可以把分组计算的函数和分组字段作为筛选条件。

这决定了,在需要对数据进行分组统计的时候,HAVING 可以完成 WHERE 不能完成的任务。这是因为, 在查询语法结构中,WHERE 在 GROUP BY 之前,所以无法对分组结果进行筛选。HAVING 在 GROUP BY 之 后,可以使用分组字段和分组中的计算函数,对分组的结果集进行筛选,这个功能是 WHERE 无法完成 的。另外,WHERE 排除的记录不再包括在分组中。

区别 2:如果需要通过连接从关联表中获取需要的数据,WHERE 是先筛选后连接,而 HAVING 是先连接 后筛选。

这一点,就决定了在关联查询中,WHERE 比 HAVING 更高效。因为 WHERE 可以先筛选,用一 个筛选后的较小数据集和关联表进行连接,这样占用的资源比较少,执行效率也比较高。HAVING 则需要 先把结果集准备好,也就是用未被筛选的数据集进行关联,然后对这个大的数据集进行筛选,这样占用 的资源就比较多,执行效率也较低。

小结如下:

优点缺点
WHERE先筛选数据再关联,执行效率高不能使用分组中的计算函数进行筛选
HAVING可以使用分组中的计算函数在最后的结果集中进行筛选,执行效率较低

开发中的选择:

WHERE 和 HAVING 也不是互相排斥的,我们可以在一个查询里面同时使用 WHERE 和 HAVING。包含分组 统计函数的条件用 HAVING,普通条件用 WHERE。这样,我们就既利用了 WHERE 条件的高效快速,又发 挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。当数据量特别大的时候,运行效率会有很 大的差别。

SELECT 的执行过程

查询的结构

shell
#方式 1:
SELECT ...,....,...
FROM ...,...,....
WHERE 多表的连接条件
AND 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...
#方式 2:
SELECT ...,....,...
FROM ... JOIN ... 
ON 多表的连接条件
JOIN ...
ON ...
WHERE 不包含组函数的过滤条件
AND/OR 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...
#其中:
#(1)from:从哪些表中筛选
#(2)on:关联多表查询时,去除笛卡尔积
#(3)where:从表中筛选的条件
#(4)group by:分组依据
#(5)having:在统计结果中再次筛选
#(6)order by:排序
#(7)limit:分页

SELECT 执行顺序

你需要记住 SELECT 查询时的两个顺序:

  1. 关键字的顺序是不能颠倒的:
shell
SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY ... LIMIT...
  1. SELECT 语句的执行顺序(在 MySQL 和 Oracle 中,SELECT 执行顺序基本相同):
shell
FROM -> WHERE -> GROUP BY -> HAVING -> SELECT 的字段 -> DISTINCT -> ORDER BY -> LIMIT

比如你写了一个 SQL 语句,那么它的关键字顺序和执行顺序是下面这样的:

shell
SELECT DISTINCT player_id, player_name, count(*) as num # 顺序 5
FROM player JOIN team ON player.team_id = team.team_id # 顺序 1
WHERE height > 1.80 # 顺序 2
GROUP BY player.team_id # 顺序 3
HAVING num > 2 # 顺序 4
ORDER BY num DESC # 顺序 6
LIMIT 2 # 顺序 7

在 SELECT 语句执行这些步骤的时候,每个步骤都会产生一个 虚拟表,然后将这个虚拟表传入下一个步 骤中作为输入。需要注意的是,这些步骤隐含在 SQL 的执行过程中,对于我们来说是不可见的。

SQL 的执行原理

SELECT 是先执行 FROM 这一步的。在这个阶段,如果是多张表联查,还会经历下面的几个步骤:

  1. 首先先通过 CROSS JOIN 求笛卡尔积,相当于得到虚拟表 vt(virtual table)1-1;
  2. 通过 ON 进行筛选,在虚拟表 vt1-1 的基础上进行筛选,得到虚拟表 vt1-2;
  3. 添加外部行。如果我们使用的是左连接、右链接或者全连接,就会涉及到外部行,也就是在虚拟 表 vt1-2 的基础上增加外部行,得到虚拟表 vt1-3。

当然如果我们操作的是两张以上的表,还会重复上面的步骤,直到所有表都被处理完为止。这个过程得 到是我们的原始数据。

当我们拿到了查询数据表的原始数据,也就是最终的虚拟表 vt1,就可以在此基础上再进行 WHERE 阶 段。在这个阶段中,会根据 vt1 表的结果进行筛选过滤,得到虚拟表 vt2。

然后进入第三步和第四步,也就是 GROUP 和 HAVING 阶段。在这个阶段中,实际上是在虚拟表 vt2 的 基础上进行分组和分组过滤,得到中间的虚拟表 vt3 和 vt4。

当我们完成了条件筛选部分之后,就可以筛选表中提取的字段,也就是进入到 SELECT 和 DISTINCT 阶段。

首先在 SELECT 阶段会提取想要的字段,然后在 DISTINCT 阶段过滤掉重复的行,分别得到中间的虚拟表 vt5-1 和 vt5-2。

当我们提取了想要的字段数据之后,就可以按照指定的字段进行排序,也就是 ORDER BY 阶段,得到 虚拟表 vt6。

最后在 vt6 的基础上,取出指定行的记录,也就是 LIMIT 阶段,得到最终的结果,对应的是虚拟表 vt7 。

当然我们在写 SELECT 语句的时候,不一定存在所有的关键字,相应的阶段就会省略。

同时因为 SQL 是一门类似英语的结构化查询语言,所以我们在写 SELECT 语句的时候,还要注意相应的 关键字顺序,所谓底层运行的原理,就是我们刚才讲到的执行顺序。

Released under the MIT License.